PHYSICAL REVIEW E 74, 021109 (2006)

Continuously varying exponents in A + B— () reaction with long-ranged attractive interaction
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We investigate kinetics of A+B—0 reaction with long-range attractive interaction V(r) ~—r"2% between
A and B or with drift velocity v ~r~? in one dimension, where r is the closest distance between A and B. It is
analytically shown that dynamical exponents for density of particles (p) and size of domains (€) continuously
vary with o when o< ,.=1/2, while that for the distance between adjacent opposite species (€,5) varies when
o< d¥=7/6. For 0> 0*® diffusive motions dominate the kinetics. These anomalous behaviors with the two
crossover values of ¢ are supported by numerical simulations.
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I. INTRODUCTION

The irreversible two-species reaction A+B— 0 has been
intensively and widely investigated as a basic model for vari-
ous phenomena in physics [1,2], chemistry [3], and biology
[4]. When an A and a B particle meet, they instantly and
irreversibly combine to form an inert species. Until now the
studies for the reaction have been focused on understanding
the effect of the fluctuations of the initial particle density or
the global bias of particle motions on the kinetics without
careful consideration of interaction between A and B even
for charged particles [1,5-11]. However, in situations where
the kinetics of the reaction is affected by some long-range
interaction between A and B such as the Coulomb interaction
[12,13], the interaction should be much more important than
the simple diffusive motions or global biases to understand
the kinetics. Such situations may include matter-antimatter
annihilation in the universe, soliton-antisoliton recombina-
tion, charge recombination in clouds [14] and electron-hole
recombination in irradiated semiconductor structures [9].

It has recently been shown through a simple model that
the underlying attractive interaction between opposite spe-
cies leads to completely different scaling behaviors from
those studied so far [12]. In the model, the fluctuation-
dominated kinetics leads to the segregation of alternating
A-rich and B-rich domains as usual [6]. In addition, domain-
boundary particles feel the attractive interaction and are as-
sumed to move to the adjacent opposite species domain with
a constant drift velocity. Since the bias is a constant regard-
less of the distance between A and B, the interaction strength
in the model [12] is infinite. In contrast the particles inside
the domain are screened by the same neighboring particles
and the motion of bulk particles is naturally assumed to
be isotropic diffusion. As a result, the interaction causes
the alternatively changing bias at domain boundaries which
is neither the relative nor the uniform bias [6,11] [see Fig.
1(a)].

In noninteracting systems, the density decay has been
known to depend on the motion and the mutual statistics of
particles. For isotropic diffusions, the particle density p(z)
scales as p(t) ~t%* in d dimensions (d<4) [5-10]. With the
global relative drift, p() scales as p(r) ~ @V for d<3 [6].
With the uniform drift of both species, the hard-core (HC)
constraint between identical particles leads to the scaling of
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p(t)~t"'3 in one dimension [11]. With the infinite interac-
tion, p(t) scales as % regardless of the HC constraint [12].
In one dimension, the uniform bias of HC particles and the
infinite interaction lead to the same scaling law for p(z), but
the scaling behaviors of basic lengths are different. Hence
the infinite interaction results in new dynamical scaling
behaviors [12].

The constant drift or the infinite attractive interaction is
unnatural [12] and cannot explain more general or real situ-
ations where the attractive interaction depends on the dis-
tance r between A and B. One of the physically realistic
attractive interactions is that described by a conserved attrac-
tive potential V(r) ~—r~2?. The drift velocity v is then given
as v(r) ~\|V|~ r~?. However in general situations, it is hard
to identify the underlying interactions which cause the
distant-dependent drift velocity. Hence it is also useful to

FIG. 1. (Color online) Snapshot of trajectories of A+B— 0 with
the attractive interaction between A and B of (a) 0=0 and (b) o
=0.3. (c) The magnified schematic trajectories of adjacent opposite
species domains. Subscripts {1,2,...,n} indicate the order of the
positions of particles from a given domain boundary.
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study the kinetics of the reaction with available form of the
drift without the informations about the forms of underlying
physical interactions.

In this paper, we investigate the kinetics of A+B— 0 with
the drift velocity to opposite species v(r)~r 7 caused by a
certain underlying physical interaction such as V(r) ~—r=2°.
In reality the motions of boundary particles cannot be deter-
mined only by the interaction, because there should exist
various noises, which normally make the background diffu-
sive motions. For this reason, a boundary particle is assumed
to stochastically move to its opposite species domain with
the rate p=[1+v(r)]/2, and to its own domain with 1-p
during unit time. Hence this model naturally includes the
competition between the attractive interaction and the diffu-
sive motion. The drifted motions at boundaries and the com-
petition are expected to lead rich and interesting scaling
behavior as o varies.

Figure 1(b) shows the space-time trajectories for o=0.3.
Using the trajectories schematically depicted in Fig. 1(c), we
analytically derive asymptotic scaling behavior. Intriguingly,
we find that all dynamical exponents for various densities
and lengths continuously vary when o < o... Furthermore the
scaling behaviors for the present model manifest unique
anomalous behaviors, which have not been seen in previous
dynamical models with the continuous varying exponents
[13,15,16]. The anomalous behavior is that there exist two
different crossover values of o,. o, for the density of par-
ticles (p) and the size of domains (f) is o,=1/2, while that
for the distance between adjacent opposite species (€,45) is
0’33 =7/6. Hence the interaction completely changes the
scaling behavior of kinetics when o< o‘?B . However, when
o= o{,‘B, the kinetics for diffusive motions is completely re-
covered [9]. As in the 0=0 case, the HC constraint is irrel-
evant due to the isotropic diffusions inside domains. We also
numerically confirm our analytical results.

The remainder of this paper is organized as follows. We
introduce our model and derive asymptotic scaling behavior
of various densities and lengths in Sec. II. We also present
Monte Carlo simulation results in Sec. III and finally
conclude in Sec. IV.

II. MODEL AND ANALYTICAL APPROACHES

We consider the irreversible reaction A+B—0 on one-
dimensional lattice with and without hard-core (HC) con-
straint between identical particles.

With the equal initial density p,(0)=pg(0), particles are
randomly distributed on a one-dimensional lattice of size L.
When the selected particle has two opposite species neigh-
bors such as (A-++A---B), the central particle (A) hops to the
opposite species (B) with rate p=[1+uv(r)]/2 and to the same
species (A) with rate 1—-p, where v(r)=r" and r is the dis-
tance between A and B. Otherwise, particles diffuse isotropi-
cally. In the region of a length €, the number of A species is
initially Ny=p4(0)€+p4(0)€ and the same for Np. After a
time t~ €%, particles travel throughout the whole of the re-
gion, and annihilate by pairs. The residual particle number is
the number fluctuation in the region, so we have the relation
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Ny~ V€ or Pa~ 1/V¢€ for a given length € and the same for
Ng and pg [5,6]. As the system evolves, the system becomes
a collection of alternating A-rich and B-rich domains. To
characterize the structure of segregated domains, we intro-
duce three length scales as in Ref. [9]. The domain length €
is defined as the distance between the first particles of adja-
cent opposite species domains [9]. The length €, is defined
as the distance between two adjacent particles of opposite
species, while €4,(€pp) is the distance between adjacent
A(B) particles. These lengths scale asymptotically as

{ ~ tl/z, €AA — tl/zAA’ €AB — tl/zAB. (1)

A bulk particle inside single species domains diffuses iso-
tropically and the mean position of the bulk particle is not
substantially changed until it becomes a boundary particle.
Once it becomes a boundary particle, it drifts to its neighbor-
ing opposite species with velocity v(r) until it annihilates in
the midway between two opposite species domains. From
this situation in mind we now analytically calculate the
scaling behaviors of the kinetics when the drift velocity is
v(r)~r=?. For an AB pair, the time interval for annihilation
of the pair is 7,5={€5/v(£45) ~ €5, For 0=0, the space-
time trajectories of particles are arch-shaped. In the o=0
case the trajectories are very close to the pentagon [12].
These arch-shaped trajectories should be self-similar (self-
affine) fractal structures, because they should have the scal-
ing symmetry due to the power-law scaling behavior (1). A
typical base unit of the self-similar arch-shaped trajectories
of adjacent opposite domains are schematically depicted in
Fig. 1(c). This base unit allows us to calculate a time 7,
needed to remove the unit of size € surrounded by one scale
larger ones. Then the size of the larger unit increases by ¢
during 7, and we have

deldt ~ €/, (2)

which gives the dynamic exponent z. In the following calcu-
lations, we consider only the mean positions of bulk par-
ticles, and assume € 4,4(f) to be a constant during the annihi-
lation of the base unit. After a smaller unit is completely
annihilated, the remainder of the particles redistribute over
the larger unit increased by the size of the annihilated unit.
Hence we approximate €,,(1)=---=€ 4(t4+7,)="=€44(¢
+7¢) during the annihilation of a smaller unit.

As only boundary particles of each domain have two op-
posite species neighbors, the annihilation of boundary par-
ticles comes from the attractive interaction. It takes a time
=€} for the first boundary pair A;B, in Fig. 1(c), to an-
nihilate. The second pair A,B, isotropically diffuses during
time 7; until A; and B, annihilate. After the time 7, the
second pair becomes a new boundary pair, and the time
ty~(L4p+€40)°t" is needed for the annihilation. So it takes
the time 7, ~ 7 +1, in total for the second pair to annihilate.
Similarly, the nth pair will annihilate after 7,~7,_;+7,,
where t,=[€45+(n—1)€4,4]°! for n=2. From the recurrence
relation of 7,, we find
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n-1

~ 0T D (g + k)T

k=1
~ 55+ [(€pp+ 1€x0) 7 = €551 Cpa- 3)

The second line is obtained by integrating out the summation
over k. As the number of particles N, and the length €an
scale as N,~ V€ and Capu~1/p~ V¢, the time 7, needed to
annihilate the domain of size € in the base unit is given by

7o~ T8+ [(€ag + €)72 = €N 2 (4)

Because of € > €5 by definition, we finally find the leading
scaling of 7, as

— €a’+3/2’ (5)

and z is given as z=0+3/2 from Eq. (2). Intriguingly,
z increases continuously and linearly with o. However
z cannot increase beyond the upper bound z.=2, because
domains cannot spread more slowly than those of random
diffusion. Hence for o=0,=1/2, we have z=2 regardless
of o. The scaling of €, is easily obtained from the relation
€AA~\J€~t”ZAA One finds z44=2z=20+3. Since €44
with the diffusion only scales as €4, ~ " [9], the critical
value of o is also a’jA= 1/2. For € 45, we consider the change
of density during time 745 [9]. During 7,5, one pair AB an-
nihilates only between boundaries, the change of particle
density is given as dp/dt~—p,p/ T5p, Where p,p is the den-
sity of AB pairs. Using relations, p~1/V€, pyp=1/€, and
Tap~ €55, one finds €5~ "8 with z,5=z=0+3/2. Inter-
estingly, €, follows the scaling of €. However, €45 with the
diffusion only scales as €45~ '8 [9] and thus o, of €,z is
o‘:B =7/6. The scaling exponents of three lengths and their
critical values of o, beyond which the diffusive scaling
behaviors recover, are summarized as follows:

z=0+3/2, ZAAIZZ, ZAB =2,

=172, o**=17/6.

From the scaling of lengths, asymptotic decays of various
densities can be extracted. The densities of total particles
(p=2p,), adjacent pairs of same species (psa=ppp) and
adjacent pairs of opposite species (p,p) scale as

(6)
o.=1/2,

P17 paa ~ M, pap ~ 1B (7)

As p~1/\t, we have p~r'% with a=1/2z=1/(20+3).
paa follows the same scaling of p due to pyu~1/€44
~1/\€ so py~t* with ayy=a. Finally p,p scales as
pap~ 1/€, which leads to p,p~1"% with ayp=1/z=1/(c
+3/2). As densities with the diffusion only scale as
p~pas~t"* and pyp~1t"2, the upper bound of o is
o.=1/2 for all densities. All decay exponents of various
densities are simply given as

a=1/2z, ap=1/z, (8)

and o, for all densities is o.=1/2. For 0=0, all the scaling
behaviors of the constant drift are fully recovered [12]. As
shown in Egs. (6) and (8), there exist two different crossover
values of o, o,(=0"*)=1/2 and 0?¥(=7/6), where o, < *%.

pp = @,
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FIG. 2. (Color online) Effective exponents of densities (a) and
lengths (b) of the model with HC constraint for o=0.1. In each
panel, two horizontal lines from top to bottom show the predictions
(a) @=0.313 and @,3=0.63, (b) 1/2z=0.625 and 1/z,44=0.313.

It is very peculiar that there exist two crossover values. How-
ever, the inequality o, < o'?B directly comes from the anoma-
lous scaling of €45 only with diffusion. With diffusion only,
adjacent opposite domains are effectively repulsive by pref-
erential annihilations of nearby AB pairs. Hence, opposite
species pairs are further apart than the typical interparticle
distance €44 and, as a result, €, increases anomalously as
/8 [9]. This anomalous scaling behavior of €, leads to
o.< 0’33 . As the strength of the interaction becomes weak,
the effect of the random fluctuation by diffusion becomes
strong. The competition between the fluctuation by diffusion
and the drift by the interaction leads to the continuously
decaying exponents and the critical values of o above which
diffusive motions dominate the kinetics. On the other hand,
since the interaction maintains the Galilean invariance of the
domain structure, the predictions (6) and (8) are expected to
be independent of the HC constraint.

III. MONTE CARLO SIMULATIONS

To confirm our analytic results numerically, we now
present the simulation results. With p,(0)=pz(0), A and B
particles distribute randomly on a chain of size L. In the
simulations we consider both HC particles and the particles
without the HC constraint, which we call bosonic particles.
In the model with HC particles there can be at most
one particle of a given species on a site. In the bosonic
model there can be many identical particles on a site. All
the simulations are done on the chain of size L=3X10°
and with p4(0)=pp(0)=0.1. We average densities and
lengths over 100 independent runs. Figure 2(a) shows
densities (inset) and their effective exponents defined as
—a(t)=In[p(21)/ p(r)]/In 2 for o=0.1 case of HC particles.
We  estimate  «=0.317(5), a44=0.3125(25), and
a,3=0.625(25), respectively. All results agree well with the
prediction (8); a=a,4=0.3125 and a,5=0.625 for o=0.1.
Figure 2(b) shows the various lengths and their effective
exponents defined as 1/z(¢f)=In[€(2¢)/€(r)]/In 2 for o=0.1.
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FIG. 3. (Color online) Effective exponents of densities (a)
and lengths (b) of the model with HC constraint for o=1.25. In
each panel, horizontal lines from top to bottom show the prediction
(a) a=ay4=1/4 and a,z=1/2, (b) 1/z=1/2, 1/z745=3/8, and
1 / TAA= 1 / 4.

We estimate z=1.60(5), z44=3.20(5), and z,5=1.60(5)
which also agree well with the prediction (6); z=1.6,
Z44=3.2, and z,5=1.6 for 0=0.1. For bosonic particles, we
also obtain nearly the same results.

To check the crossover from the continuously varying dy-
namical scaling to the diffusive one, we now present the
numerical results of HC particles for o=1.25 (>aij> o,)
in Fig. 3. We estimate «=0.25(1), a,,=0.24(1), and
a,5=0.47(1), which agree well with those for the diffusion;
a=ay=1/4 and a,5=1/2 [9]. For lengths, we estimate
1/z=0.50(5), 1/z,4,=0.26(1), and 1/z,5=0.375(5) which
also agree well with those for the diffusion, 1/z=1/2,
1/z44=1/4, and 1/z45=3/8 [9]. In Figs. 2 and 3, data be-
comes noisy when the asymptotic scaling regime is reached.
The noise can be reduced by averaging more samples. Espe-
cially the step of 1/z in Fig. 2 just comes from the fluctuation
of data so it will disappear for larger samples. The step can
be more smooth if we use m=5 or 10 instead of m=2 in the
definition of the effective exponent.

We plot the estimates of all exponents versus o and the
lines for the predictions (6) and (8) both for HC particles and
for bosonic particles in Fig. 4. All exponents except 1/z45
continuously vary along the predicted lines for c<o,.=1/2.
In contrast 1/z4p varies along the predicted line for
o<0%%=7/6. Beyond o, (or o), each exponent takes the
value of the diffusive system without the interaction regard-
less of a. The exponents for HC particles are nearly identical
to those for the bosonic particles, and this result comes from
the irrelevance of the HC constraint to the kinetics due to the
isotropic diffusion inside domains.

IV. SUMMARY AND DISCUSSION

In summary, we investigate the kinetics of irreversible
reaction A+B— 0 with the drift velocity v(r) ~r? to oppo-
site species at segregated domain boundaries. The drift leads
to arch-shaped space-time trajectories of particles from
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FIG. 4. Plot of versus  o.

dynamical
Main (inset) plot show the exponents for HC (bosonic) particles.
Solid lines in each panel from top to bottom correspond to
the predictions; 1/z45=1/(0+3/2) and 1/z44=1/(20+3). Hori-
zontal dashed lines from top to bottom correspond to 1/z=1/2,
1/z45=3/8, and 1/z44=1/4, respectively.

exponents

which we analytically derive asymptotic scaling behaviors,
and numerically confirm them. Intriguingly, the drift results
in continuously varying scaling behavior up to the certain
critical values, o, (or 0‘33), above which diffusive motions
dominate the kinetics. In our derivations, we only consider
the mean positions of particles and neglect the expansion of
domains by the random fluctuations during the annihilations
of domains. From the irrelevance of HC constraint to the
kinetics due to the isotropic diffusion inside domains, the
dynamical critical property is independent of HC constraint.

It is worthy to compare the present model with the model
of Ref. [13] which considers repulsive force F~ ™ between
the same species as well as the attractive force F~—r
between opposite species. In this model, a particle
interacts with all other particles in the system which are
HC particles. This model is also shown to have the continu-
ously varying dynamical exponents with N when A <2.
Especially, in the range of A>1, a boundary particle only
interacts with particles in the nearest neighboring domains
and the interaction with other particles can be neglected. As
the distance between domains (€,5) and the interparticle
distance (€,,) are assumed to be the same, the force acting
on a boundary particle scales as F~ £, ~ €. As a result, the
boundary particles effectively interact with the nearest neigh-
boring particles. Hence, the kinetics for N> 1 is essentially
determined by the motions of particles at domain boundaries
as in our model.

For particles undergoing overdamped noiseless motion,
this model gives the same exponents for some densities and
lengths as those of our models for A>1. As \ is given as
A=20+1 for the conserved force, the dynamic exponents,
Zaa=N+2 and z=1+N/2 of Ref. [13] recover z44 and z of
Eq. (6) of our model. Hence the decay exponents of p and
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pas of both models are also the same. For A >2, the kinetics
is also known to be dominated by diffusive motions [13] so
the upper bound A.=2 corresponds to o.=1/2 of € and €4,
in our model.

This model shares some essential features of our model
in the range A > 1, but it has not considered some features
such as two crossover values of A, the anomalous scaling
behavior of €45 and the irrelevance of hard-core constraint.
Our model captures the essential features of the oppositely
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chargedparticle system in which the interaction between
opposite charges is weaker than Coulomb interaction in one
dimension.
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